
learning focus:

- √ find and interpret slope and rate of change
- write equations for proportional and nonproportional situations
- create multiple representations of a linear relationship

a 9 day CCSS-aligned unit CCSS: 8.EE.5, 8.EE.6, 8.F.4

ready-to-go, scaffolded student materials

LINEAR RELATIONSHIPS UNIT

Table of Contents

PAGE	TOPIC	RESOURCE
4	Sample Pacing Guide	
5-6	Ideas for Implementation and Helpful Hints	
7-15	Binder Covers, Dividers and Spine Labels	
17-18	Slope and Rate of Change	Student Handout 1
19	Slope and Rate of Change	Homework 1
21-22	The Slope Formula	Student Handout 2
23-24	The Slope Formula	Homework 2
25-26	Slope-Intercept Form: Part I	Student Handout 3
27	Slope-Intercept Form: Part I	Homework 3
29-30	Slope-Intercept Form: Part II	Student Handout 4
31-32	Slope-Intercept Form: Part II	Homework 4
33-34	Quiz: Slope and Slope-Intercept Form	Quiz 1
35-36	Graphing Linear Equations	Student Handout 5
37-38	Graphing Linear Equations	Homework 5
39-40	Multiple Representations	Student Handout 6
41	Multiple Representations	Homework 6
43-44	Proportional and Non-Proportional Relationships	Student Handout 7
45	Proportional and Non-Proportional Relationships	Homework 7
47-49	Linear Relationships Study Guide	Review
51-54	Linear Relationships Unit Test	Test

©Maneuvering the Middle LLC, 2016

a 9 day CCSS-aligned unit CCSS: 8.EE.5, 8.EE.6, 8.F.4

student friendly + real-world application

coverage of a miles cond day over the read several days. Another worder the equalition of credeft the grey his order of miles frowled on the bits. In Part that expect a first grey the grey his order of miles frowled on the bits. In Part that expect a the grey his order of miles frowled on the bits. In Part that expect the grey his order of miles frowled on the bits. In Part that expect the grey his order of miles frowled on the bits. In Part that expect the grey his order of the grey his order orde	Unit: Linear Relationships Student Handout 3	Name	_PdI	multiple
Notice sequation? Note: Superintercept form. Note: Super	Xander has biked 2 miles so far this week average of 6 miles each day over the next se wrote the equation and created the graph to r	and plans to bike an veral days. Xander epresent x, the number	5x + 2	representations
11. Matt is going to create a graph of the false and correct any false statements	a. Find the slope of the graph. Where do y Xander's equation? b. What value does the graph touch on the see this value in Xander's equation? Xander's equation is written in slope-inter SLOPE-INTERCEPT FORM • Slope-intercept for one way to write the line	For each graph below, record the slop 5. 10 9 8 7 6 11 12 3 4 5 6 7 8 9 10 12 100 80 80 40 20 11 21 12 13 45 6 7 8 9 10 81 82 14 15 16 16 16 16 17 18 18 18 18 18 18 18 18 18	Unit: Linear Relationships Homework 3 SLOPE-INTI Apply your knowledge of slope-intercept 1. Harper is going to create a graph of t equation y = -0.5x + 12. Which of the fowill be true about the graph? a. The graph will contain the origin. b. The graph will contain the origin. c. The graph will cross the x-axis at (12 d. The graph will have a slope of -0.5. For each graph below, record the slope.	Name
$y = -5x + 2.5$ $y = 4x - 7$ $y = -3x - 11$ $y = \frac{4}{5}x - 20$	error ana	false and correct any false statemen a. Matt's graph will cross the y b. Matt's graph will increase fr 12. Circle the name of any student wi represent the graphed line shown at: JAVIER	Solution in the equation below to represent the equation. I equation: $y = \frac{1}{2}x - 3$ 8. Mr. Brown asked his students to write and a negative y-intercept. Circle the national state of the equation and the equation is the equation.	m:b: b: b:

a 9 day CCSS-aligned unit CCSS: 8.EE.5, 8.EE.6, 8.F.4

streamline your planning process with unit overviews

LINEAR RELATIONSHIPS **OVERVIEW**

STANDARDS

8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways

8.EE.6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.

 $\textbf{8.F.4} \ Construct \ a \ function \ to \ model \ a \ linear \ relationship \ between \ two \ quantities. \ Determine \ the \ rate \ of \ change \ and \ initial \ value \ of \ the \ function \ from \ a \ description \ of \ a \ relationship \ or \ from \ two \ (x, y) \ values,$ including reading these from a table or from a graph. Interpret the rate of change and initial value of a linea function in terms of the situation it models, and in terms of its graph or a table of values

Student Handout 1

Homework 1

Graphing Linear Equations

Student Handout 5

Homework 5

DAY 6

NOTES

key vocabulary

vertical alignment

PIG IDEAS

- Slope of linear relationship linear graph is the same b
- The rate of change and ini
- Linear relationships can be characteristics.

LINEAR RELATIONSHIPS UNIT

sample pacing calendar

ESSENTIAL QUESTI

- · How can the slope of a line l
- · What makes a situation pro-
- · How can rate of change be f

PACING GUIDE

Student Handout 2

Homework 2

Multiple

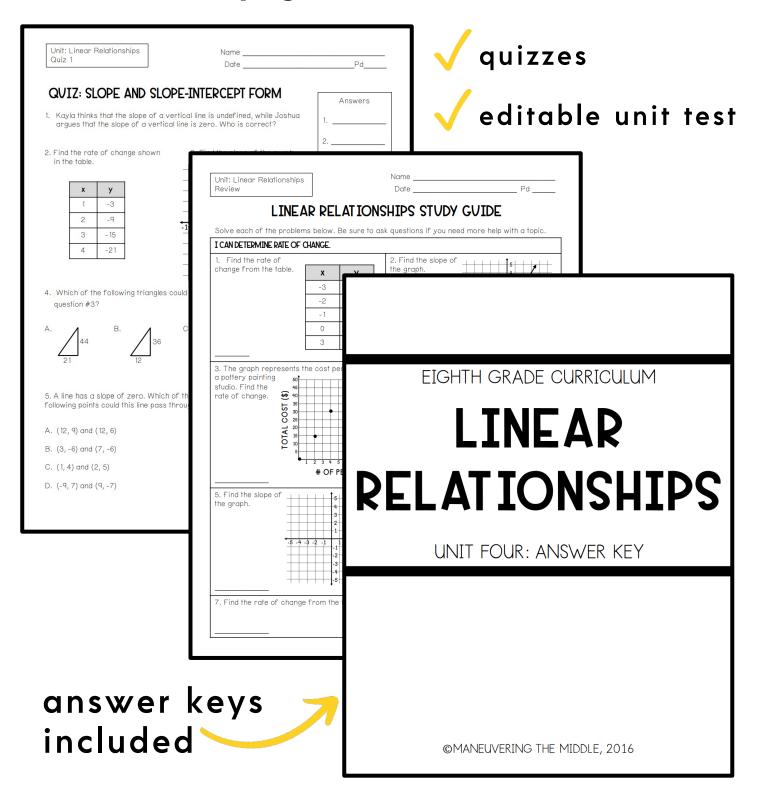
Student Handout 6

Homework 6

DAY 1	DAY 2	DAY 3	DAY 4	DAY 5
Slope and Rate of	The Slope Formula	Slope-Intercept	Slope-Intercept	Slope and Slope-
Change		Form: Part I	Form: Part II	Intercept Form Quiz

LINEAR RELATIONSHIPS UNIT **OVERVIEW**

TOPIC	TEACHING TIPS
Slope and Rate of Change	Have students draw the side view of a steep ramp and the side view of a ramp that isn't very steep. Allow students to discuss what makes one ramp steeper than the other and emphasize the differences in the vertical change over the horizontal change.
Proportional and Non- Proportional Relationships	An easy question students can ask to see if a situation is proportional is, "As one quantity doubles, does the other quantity double?". If the answer is yes, the relationship is proportional.
Slope-Intercept Form	Search "Linear Equations" on www.Flocabulary.com for a related video. To help students remember "b" is the y-intercept, use alliteration to say that "b" represents "begin".
Equations and Graphs	Search "Graphing Lines" on www.brainpop.com for an interactive tool where students can manipulate the


teaching ideas

a 9 day CCSS-aligned unit CCSS: 8.EE.5, 8.EE.6, 8.F.4

unit study guide + assessments

A MANEUVERING THE MIDDLE® RESOURCE